MCE SOLVE Examples
March 2014

This note describes the example programs that are distributed with the mce_solve code for solving
linear and nonlinear rational expectations models in EViews. The examples illustrate how to set up a
model for use by the solution code and how to run various types of simulations. The examples all use a
very simple three-equation model. Inflation depends on expected inflation next quarter, actual inflation
last quarter, and the output gap. The output gap also depends on its first lead and lag, and on the real
short-term rate of interest. The nominal short-term rate of interest is determined by an inertial form of
a Taylor-type rule. The model contains two unique future-dated variables: the inflation lead, which
appears twice; and the output gap lead, which appears once. The model is structured so that in
equilibrium inflation, the output gap, and the rate of interest are all zero. The example programs
initialize all data to zero.

Much of the material presented below is described in more detail in the MCE Solve Users Guide.

The mce_solve algorithms are extended path methods and thus require that the simulation interval be
long enough that extending the terminal date by an additional quarter has no effect on the simulated
outcomes over the period of interest. The algorithms also require that all variables that appear as leads
have defined observations (terminal values) in the quarters after the end of the simulation interval. For
example, a variable with a second lead requires terminal values in the first two quarters after the end of
the simulation period. Finally, because the algorithms impose perfect foresight of future outcomes, all
future-dated shocks are fully anticipated at the start of a simulation. The analysis of unanticipated
shocks requires a sequence of simulations.

The mce_solve algorithms are coded as a set of subroutines, and thus they can be executed only as part
of a program. Each example program loads the subroutines with the command

include mce_solve_library

A path to mce_solve_library may also be needed. Among the more than 20 subroutines in
mce_solve_library, the one named mce_run provides the interface for designing and executing a
simulation. The mce_run subroutine takes three arguments, each of which is a string.

"

%mopts = “ ...
%aopts = “
%sopts = “ ...
call mce_run(%mopts,%aopts,%sopts)

“

“

The first string (%mopts) provides the model setup instructions needed by the mce_solve algorithms; the
second string (%aopts) chooses an algorithm; and the third string (%sopts) defines the type of
simulation.

%mopts

In the following discussion, let Model O contain n distinct future values of endogenous variables (ie,
expectations variables). In order to use the mce_solve algorithms to simulate this model, two separate
operational models must first be created. One, Model B, is formed from Model O by replacing all leads
of endogenous variables with expectations proxies, which can be either new exogenous variables or new
endogenous variables; the proxies must have current (or past) dates. The other model, Model F, must

contain for each of the n expectations variables an equation that defines its MC expectations error, that
is, the gap between the value of the expectations proxy and the future-dated outcome. Depending on
the contents of the %$mopts string, Model B and Model F can be constructed automatically from Model
O or the user can supply the names of two operational models that have already been created.

Program examplel illustrates the syntax for the automated case, which constructs Model B by replacing
all leads of endogenous variables in Model O with new exogenous variables and assigns to Model F an
MC expectations error equation for each lead in Model O. The %mopts string in this program,

%mopts = "create,mod=%mod,adds,track"

uses the create keyword to initiate code that parses the model whose name the program has previously
placed in the string %mod and then constructs the two required operational models. The adds keyword
causes add factors to be assigned to all equations in the two models, and the track keyword causes the
add factors to be given tracking values for the sample period in effect when the call to mce_run is made.
(The adds and track keywords are in fact unnecessary in this particular example, as all equations hold
exactly for the baseline data in which all variables are zero, but this will not be true in general.)

Before turning to an example in which the two operational models are set up manually, it's worth noting
the main reason why the automated approach is not always preferable: The user does not have access
to the operational models in the automated case between the time they are created and the time the
simulation is run, because the setup steps and the simulation are all executed with a single call to
mce_run. For this reason, if tracking add factors are desired in the automated approach, they have to be
introduced via keywords in the %$mopts string, as noted above. In addition, the automated approach
also makes it difficult to define before the call to mce_run any shocks that are to be included in the
simulation, because the shocked variables may not yet exist (if they are add factors), or if they do exist,
modifications to the variables will be fully offset if tracking adds are computed automatically. In
examplel, the commands that define the shock to be simulated are placed in a text file. The txt
keyword in the %sopts string causes the commands to be executed during the call to mce_run after
tracking adds have been computed and before the simulation is run.

Program example2 runs the same simulation with the same model used in examplel but constructs the
two operational models manually. In the %mopts string in example2,

%mopts = "mod_b=%modb,mod_f=%modf,mce_instrus=%instrus,mce_errs=%errs,adds,track"

the keyword mod_b points to the name of the operational Model B; mod_f to the name of the
operational Model F; mce_instrus to the names of the exogenous expectations proxies in Model B; and
mce_errs to the names of the MC expectations errors in Model F. The number of expectations proxies
and expectations errors must be the same. See the program for information on how %$modb, %modf,
%instrus, and %errs are defined.

In program example3, which also sets up the two operational models manually, the expectations proxies
in Model B are not exogenous variables, as is the case in examplel and example2, but rather they are
endogenous variables with their own equations. The equation for the expected inflation proxy is the
four-quarter average of lagged inflation; the equation for the proxy for expected output has a similar
structure. Given this design, Model B can be thought of as a complete system in which expectations
have a particular autoregressive form. A consequence of shifting from exogenous to endogenous
expectations proxies is that the instruments whose values are adjusted to impose the MC conditions
must be the add factors on the equations for the endogenous expectations proxies.

%aopts

The choice of an MC solution algorithm and its various options is made using the second or %aopts
argument of the mce_run subroutine. The meth keyword specifies the algorithm: meth=newton for the
Newton algorithm; meth=gnewton for a limited-memory implementation of Broyden’s quasi-Newton
method. The default is newton, which is usually the faster of the two for single simulations of linear
models of small-to-medium size. For nonlinear models, newton tends to be penalized relative to
gnewton to the extent that the nonlinearity eliminates patterns that can be exploited in computing the
Newton expectations Jacobian. The newton algorithm has a substantial advantage over gnewton on
experiments that involve a large number of MCE solutions, as long as the same expectations Jacobian
can be used for each newton solution.

Associated with the newton algorithm are various options for the computation of the expectations
Jacobian. Both examplel and example2 are able to use the jinit=linear option, whose operation is very
efficient at computing the exact Jacobian of a linear model in which the maximum endogenous lead and
lag is one period, as is the case in these examples. The model in example3 does not satisfy these
conditions, because the expectations proxies depend on four lagged values. An efficient choice in this
example is the approximate Jacobian calculated with the jinit=interp(4) setting. This example also
illustrates the greater flexibility that the manual creation of the two operational models permits in the
assignment and initialization of add factors, the declaration of scenarios, and the specification of shocks.

Another feature of the third example is that it runs three simulations and demonstrates in the second
and third simulations how the assignment of null strings to the first two arguments of the mce_run
causes the simulations to be run with the same operational models and algorithm (including the Newton
MCE Jacobian) that were created or declared in the first simulation.

The first three examples run simulations of a linear model. Example4 introduces nonlinearity by
modifying the model in example3 so that a lower bound on the short-term rate of interest is imposed.
Given that the baseline data is set to zero, the lower bound on the interest rate is set at -1.0. The
simulation is a negative output shock that is sufficiently large to make the lower bound bind for several
years. The example sets meth=gnewton because, as noted above, nonlinearity tends to favor the
gnewton algorithm over the newton algorithm, although the speed advantage of gnewton turns out to
be slight in this case, because the model is relatively small. This example uses a kinked function to
impose the interest-rate lower bound. The discontinuous first derivative of this type of function can be
the source of convergence problems, though this is not the case in the example.

%sopts

The third or %sopts argument of the mce_run subroutine declares the type of simulation to be run and
sets related options. In addition to the single type that the first four examples illustrate, two
optimization simulation types are available: opt and opttc.

When the opt simulation type is chosen, mce_run invokes an iterative procedure that attempts to find
the time paths of one or more exogenous instrument variables that minimize a loss function. When
used to find the optimal path of a policy instrument, the solution is one of commitment. The algorithm
usually requires many individual MCE solutions to find the optimal solution. For models that are not too
nonlinear, the newton algorithm is likely to be execute much more quickly than the gnewton algorithm
in this case.

The opttc simulation type is used when the optimizing agent cannot commit to a fixed instrument
trajectory. In this case, the algorithm attempts to find the Nash time-consistent solution using a
backward-induction approach. Note that the “opttc' algorithm provides only an approximate solution.!

Program example5 illustrates how to set up and execute both types of optimization simulations when
the path of the short-term rate of interest is chosen to minimize a loss function. The policy instrument
is an adjustment factor to the policy rule equation. For the commitment (opt) case, the program makes
use of the default settings in which the interest rate is chosen optimally over the first 40 simulation
periods to minimize the loss function when it is evaluated over the first 60 periods. The evaluation
period is chosen to be longer than the instrument period to minimize any discontinuities in the interest
rate that may arise when the end of the instrument and evaluation periods coincide. For the time-
consistent (opttc) case, the procedure assumes that each of 40 policymakers (one for each of the first 40
simulation periods) adjusts his single-period instrument to minimize a loss function that extends 60
periods from the date of their instrument.

1 A first source of divergence between the true time-consistent solution and the computed solution concerns the
assumption that, at each iteration, one policymaker optimizes and the other policymakers hold their policy
instruments fixed. This assumption is correct only when the non-optimizing policymakers’ instruments are
adjustment factors to the model's true time-consistent policy rule. The opttc simulation procedure is designed for
use with models for which it is difficult or impossible to compute the optimal time-consistent rule. (Testing the
sensitivity of the opttc solution to variations in the assumed policy rule may be prudent.) In addition, for nonlinear
models the solution is based on the linearized relationship between the instruments and targets faced by the first
policymaker.

