Dear fellow friends,
I am currently running a model with pooled mean group.
However I do not find Hausman Test for validation of Pooled Mean and Mean Group. May I know what is the command of this test?
I have tried "Eq01.ranhaus" which Eq01 is estimated equation, however, it prompts error message.
Thanks a lot for your help.
Pooled Mean Group & Mean Group Estimation
Moderators: EViews Gareth, EViews Moderator

 Fe ddaethom, fe welon, fe amcangyfrifon
 Posts: 11549
 Joined: Tue Sep 16, 2008 5:38 pm
Re: Pooled Mean Group & Mean Group Estimation
EViews does not have this test built in.
Follow us on Twitter @IHSEViews
Re: Pooled Mean Group & Mean Group Estimation
Dear Gareth,
May I further understand how to evaluate which model is better then for PMG and MG?
Can we just skip this Hausman test and assume PMG is best to use?
Thank
May I further understand how to evaluate which model is better then for PMG and MG?
Can we just skip this Hausman test and assume PMG is best to use?
Thank
Re: Pooled Mean Group & Mean Group Estimation
Hey Shin
I've just stumbled across the same problem.
http://www.statajournal.com/sjpdf.html ... num=st0125
Here they argue that just assuming PMG is the best model, is a bad idea. If the slopes are in fact not homogenous, but you are forcing them to be in the longrun equation, then the PMG estimator is not efficient.
The application of the Hausman test here relies on the fact that the longrun parameter estimates can be derived from the average of the country regressions (MG). This is consistent even under heterogeneity. But if slopes are in fact homogenous, PMG is more efficient.
The Hausman test is really easy to implement though. As shown for example in Applied Econometrics (Asteriou, Hall, 2007) (or see Wikipedia) it is just:
H=q' [var(q)]^(1) q where q is the difference in the estimates. It is chisquare distributed with k dfs, where k is the number of coefficients in q.
Edit: actually  forget the "really easy". Its quite tedious work. While you can get the variancecovariance matrix for the PMG estimation quite easily, the MG variance covariance matrix is complicated. Note that in the above Stata Journal article they give the advice to use the same variance estimate (sigma squared) for both covariance matrices (to avoid nonpositive definite covariance matrices).
I've just stumbled across the same problem.
http://www.statajournal.com/sjpdf.html ... num=st0125
Here they argue that just assuming PMG is the best model, is a bad idea. If the slopes are in fact not homogenous, but you are forcing them to be in the longrun equation, then the PMG estimator is not efficient.
The application of the Hausman test here relies on the fact that the longrun parameter estimates can be derived from the average of the country regressions (MG). This is consistent even under heterogeneity. But if slopes are in fact homogenous, PMG is more efficient.
The Hausman test is really easy to implement though. As shown for example in Applied Econometrics (Asteriou, Hall, 2007) (or see Wikipedia) it is just:
H=q' [var(q)]^(1) q where q is the difference in the estimates. It is chisquare distributed with k dfs, where k is the number of coefficients in q.
Edit: actually  forget the "really easy". Its quite tedious work. While you can get the variancecovariance matrix for the PMG estimation quite easily, the MG variance covariance matrix is complicated. Note that in the above Stata Journal article they give the advice to use the same variance estimate (sigma squared) for both covariance matrices (to avoid nonpositive definite covariance matrices).
Who is online
Users browsing this forum: Google [Bot] and 10 guests