
EXERCISE ON ESTIMATING GMM MODELS IN EVIEWS

Introduction

In this exercise we demonstrate how GMM models are estimated in EViews. 
Data from two advanced econometrics texts are used: Hayashi’s Econometrics and Favero’s Applied Macroeconometrics
. 
Preparations

Enter EViews and choose:

· File

· Open datasets
· Select 
· GMM1.wf1 (for Hayashi’s dataset) – Exercise 1
· hmsfit.wf1  (for Favero’s dataset1) – Exercise 2
· cggrfc.wf1  (for Favero’s dataset2) – Exercise 3 
Exercise 1: Empirical Exercise from Hayashi Chapter 3: Least Squares and GMM estimation of wage equation (Hayashi suggests using TSP or RATS but this can also be completed in EViews with some manipulation). Questions are reproduced here (sometimes truncated) for practical purposes. This exercise is based on the wage equation discussed in Griliches (1976) and data used in Blackburn and Neumark (1992). This exercise is intended to provide a background on the applications of GMM including tests for over-identifying restrictions. Some questions are omitted and are left as home work to be completed in your spare time.
The data is cross-sectional data on individuals at two points in time: the earliest year in which wages and other variables are available and in 1980. An Excel version of this data is available from Hayashi’s website: http://www.e.u-tokyo.ac.jp/~hayashi/ . A full description of the data set is given on page 250-251 in Hayashi. The variables are:

RNS = dummy for residency in southern states
MTR = dummy for marital status (1 if married)
SMSA = dummy for residency in metropolitan areas

MED = mother’s education 

KWW = score on the “Knowledge on the World of Work”
IQ = IQ score

S = completed years of schooling

EXP = experience in years


TENURE = tenure in years

LW = log wage

Variable without “80” are those for the first point and those with “80” are for 1980. Year = the year of the first point in time. There are 758 observations. For this exercise, we use an undated/irregular data format in EViews.
Tasks

a. Calculate the means and standard deviation of all the variables (including those for 1980) and the correlations between IQ and S. Generate seven year dummies for Year = 66,….,73 (with exception of 1972, which has no observation)
Answer: 
Select the relevant variables and open as a group. Select View/Descriptive Statistics/Common sample. A quick way to compute pairwise correlation is to use the following command in the EViews command window @cor(x,y); where x and y are the respective variables.
To create the Year dummy for 1966 say, enter the following command in the EViews command window:  genr y66=(Year=66); where 66 is equivalent to 1966. This can also be created by selecting Quick/Generate Series… and by entering y66=(Year=66).
b. Estimate a Two Stage Least Squares (TSLS) regression model for the following wage equation
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where LW is log wages, S is schooling and 
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. The set of instruments should consists of the predetermined variables (S and h), the excluded predetermined variables (MED, KWW, MRT, AGE) and the year dummies. Is the relative magnitude of the three different estimates of schooling coefficient consistent with prediction based on the omitted variable and errors-in-variables biases?

Answer:

TSLS regression are estimated in EViews by entering the TSLS command
 in the command window or by selecting Quick/Estimate Equation to launch the equation specification dialog box. Select TSLS as the estimation method. Enter the equation specification in the equation box and list of instruments in the instrument list box (all variables are separated by single spaces). Select OK to estimate the equation. Select Name to name the equation as estimated equation object. The equation is called Eq3_2sl in the workfile. The output is produced below:
	Dependent Variable: LW

	Method: Two-Stage Least Squares

	Date: 04/21/04   Time: 12:02

	Sample: 1 758

	Included observations: 758

	Instrument list: S EXPR TENURE RNS SMSA Y66 Y67 Y68 Y69 Y70

	        Y71 Y73 MED KWW MRT AGE

	Variable
	Coefficient
	Std. Error
	t-Statistic
	Prob.  

	S
	0.069176
	0.013049
	5.301243
	0.0000

	IQ
	0.000175
	0.003937
	0.044358
	0.9646

	EXPR
	0.029866
	0.006697
	4.459637
	0.0000

	TENURE
	0.043274
	0.007693
	5.624804
	0.0000

	RNS
	-0.103590
	0.029737
	-3.483514
	0.0005

	SMSA
	0.135115
	0.026889
	5.024925
	0.0000

	Y66
	4.399550
	0.270877
	16.24187
	0.0000

	Y67
	4.346952
	0.275144
	15.79883
	0.0000

	Y68
	4.479019
	0.270866
	16.53592
	0.0000

	Y69
	4.610446
	0.278285
	16.56736
	0.0000

	Y70
	4.638184
	0.290522
	15.96498
	0.0000

	Y71
	4.628011
	0.284842
	16.24764
	0.0000

	Y73
	4.725444
	0.282660
	16.71774
	0.0000

	R-squared
	0.425512
	    Mean dependent var
	5.686739

	Adjusted R-squared
	0.416258
	    S.D. dependent var
	0.428949

	S.E. of regression
	0.327730
	    Sum squared resid
	80.01823

	Durbin-Watson stat
	1.723148
	
	
	


c. Calculate the Sargan statistic (it should be 87.665). What should the degrees of freedom be? Calculate the p-value.

Answer:

Unfortunately, the Sargan statistic is not automatically produced after TSL regression estimation in EViews. However, Davidson and MacKinnon (2004)
 suggest that multiplying the number of observations by the uncentered R2 from the regression of the residuals of the TSL (instrumental variables estimator) wage equation on the set of instruments is equivalent to the Sargan statistic. To do this, select Proc/Make Residual Series and chose a name for the residuals. These residuals have been labelled as tslresid in the workfile. To regresses tslresid on the list of instruments use Quick/Estimate Equation… and specify the equation in the box. The estimated equation is Eq4_tslresid in the workfile and the uncentered R2 value is 0.115640160943. This multiplied by the number of observation 758 will give 87.665. A scalar called sargan has been created for this value and is saved in the workfile. 
The degrees of freedom is equivalent to the number of over-identifying restrictions (number of instrument - number of regressors); which in this case is equal to 3. A quick to do a chi-square test in EViews is use the following command in the EViews command window:  scalar p=@chisq(statistic,df); where p is calculated P-value and statistic being tested. In our case P-value (called sarganp in the workfile) = 0, which mean that the validity of the instruments list is rejected.      
d.  Obtain the 2SLS estimate by actually running two regressions. Verify that the standard errors given by the second stage regression are different from those you obtained in (b).
Answer: Exercise to be completed by participants in their spare time.
e. Griliches mentions that schooling, too, may be endogenous. What is his argument? Estimate by 2SLS the wage equation, treating both IQ and S as endogenous. What happens to the Schooling coefficient? How would you explain the difference between your 2SLS estimate of the schooling coefficient here and your 2SLS estimate in (b)? Calculate Sargan’s statistic (it should be 13.268) and its p-value.
Answer:

Most of this will be left as an exercise to be completed by participants in their spare time. Treating S ad endogenous is equivalent to removing it from the instrument list.
f. Estimate the wage equation by GMM, treating schooling as predetermined in the 2SLS estimation in part (b). Are 2SLS standard errors smaller than GMM standard errors? Test whether schooling is predetermined by C statistic (it should be 58.168).
Answer:
GMM and TSL (IV) models are estimated in a similar fashion in EViews. Follow the steps given in part (b) above and select GMM (instead of TSL) as the estimation method. Note that EViews will return a singular matrix error if the instruments are not linearly independent. For this exercise, one of the Year dummies should be dropped from the list of instruments
. EViews reports an incorrect J-statistic – multiply the EViews J-statistic by the number of observations to get Hansen’s J-statistic. The J-statistic is asymptotically distributed chi-square with degrees of freedom equal to the number of over-identifying restrictions. The number of over-identifying restrictions is equivalent to the number of extra instruments (instrument – parameters).  Use the “White cov” option for the weighting matrix. To calculate C, estimate two GMMs with and without schooling as an instrument and take the difference between the reported J-statistics (multiplied by the number of observations). Hayashi suggested that the same 
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(the asymptotic variance) must be used for both models. Unfortunately this criterion cannot be implemented in EViews
. However, asymptotically our results will be similar. The calculated C-statistic is 59.48 (and is asymptotically chi-square with 1 df). The equation Eq5gmm1 in the workfile is for the estimated GMM model with schooling as a predetermined variable while Eq6gmm1 is the GMM model with schooling as an endogenous variable. The outputs for Eq5gmm1and Eq6gmm1 are given below:
Eq5gmm1
	Dependent Variable: LW

	Method: Generalized Method of Moments

	Date: 04/21/04   Time: 12:21

	Sample: 1 758

	Included observations: 758

	White Covariance

	Simultaneous weighting matrix & coefficient iteration

	Convergence achieved after: 7 weight matrices, 8 total coef iterations

	Instrument list: S EXPR TENURE RNS SMSA Y66 Y67 Y68 Y69 Y70

	        Y71 MED KWW MRT AGE

	Variable
	Coefficient
	Std. Error
	t-Statistic
	Prob.  

	S
	0.079088
	0.013325
	5.935254
	0.0000

	IQ
	-0.001659
	0.004168
	-0.398106
	0.6907

	EXPR
	0.032047
	0.006729
	4.762674
	0.0000

	TENURE
	0.051116
	0.007420
	6.888685
	0.0000

	RNS
	-0.098632
	0.029995
	-3.288288
	0.0011

	SMSA
	0.132296
	0.026653
	4.963645
	0.0000

	Y66
	4.426808
	0.294240
	15.04488
	0.0000

	Y67
	4.414694
	0.298596
	14.78485
	0.0000

	Y68
	4.521611
	0.290877
	15.54476
	0.0000

	Y69
	4.632665
	0.301330
	15.37405
	0.0000

	Y70
	4.663000
	0.312888
	14.90307
	0.0000

	Y71
	4.662968
	0.306218
	15.22761
	0.0000

	Y73
	4.762173
	0.306796
	15.52230
	0.0000

	R-squared
	0.414080
	    Mean dependent var
	5.686739

	Adjusted R-squared
	0.404642
	    S.D. dependent var
	0.428949

	S.E. of regression
	0.330975
	    Sum squared resid
	81.61055

	Durbin-Watson stat
	1.721509
	    J-statistic
	0.093528


Eq6gmm1
	Dependent Variable: LW

	Method: Generalized Method of Moments

	Date: 04/21/04   Time: 12:23

	Sample: 1 758

	Included observations: 758

	White Covariance

	Simultaneous weighting matrix & coefficient iteration

	Convergence achieved after: 3 weight matrices, 4 total coef iterations

	Instrument list: EXPR TENURE RNS SMSA Y66 Y67 Y68 Y69 Y70

	        Y71 MED KWW MRT AGE

	Variable
	Coefficient
	Std. Error
	t-Statistic
	Prob.  

	S
	0.175877
	0.020855
	8.433281
	0.0000

	IQ
	-0.009286
	0.004919
	-1.887820
	0.0594

	EXPR
	0.050316
	0.008105
	6.207761
	0.0000

	TENURE
	0.042463
	0.009564
	4.439941
	0.0000

	RNS
	-0.103948
	0.033732
	-3.081570
	0.0021

	SMSA
	0.124772
	0.030992
	4.025991
	0.0001

	Y66
	4.002781
	0.336490
	11.89567
	0.0000

	Y67
	3.949810
	0.341467
	11.56718
	0.0000

	Y68
	4.048427
	0.334069
	12.11855
	0.0000

	Y69
	4.158526
	0.347351
	11.97213
	0.0000

	Y70
	4.169593
	0.359124
	11.61045
	0.0000

	Y71
	4.086959
	0.353507
	11.56118
	0.0000

	Y73
	4.102428
	0.357424
	11.47775
	0.0000

	R-squared
	0.216595
	    Mean dependent var
	5.686739

	Adjusted R-squared
	0.203976
	    S.D. dependent var
	0.428949

	S.E. of regression
	0.382709
	    Sum squared resid
	109.1175

	Durbin-Watson stat
	1.802578
	    J-statistic
	0.015058


Before calculating the C-statistic, we first assess the validity of the instruments and the specification of each equation. 
The J-statistic for Eq5gmm1 is J1=758*0.093528 = 70.894. The number of over-identifying restriction is equal to 3. The p-value 
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 [command: scalar gmmp1=@chisq(70.894,3)]. It suggests that the restrictions are invalid and the model is not correctly specified
. For Eq6gmm1 J2 = 758* 0.015058 = 11.414. There are now 2 over-identifying restrictions and the p-value = 0.00332 [command: scalar gmmp2=@chisq(11.414,2) ]suggesting that the restrictions are invalid and the model is not correctly specified. 
The C-statistic
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. This is asymptotic chi-square with 1 df. Where df is equal to the difference between the full set of instruments and it subset (equal to 1 in this case). The p-value [command: scalar p1=@chisq(59.48,1)]
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. Under the null hypothesis that schooling is predetermined, the result suggests a clear rejection. Therefore, schooling must be endogenous. See Hayashi page 218-221 for discussion of this statistic. 
g. The large J-statistic in part(f) is a concern. Drop MED and KWW from the instrument list and re-estimate by TSL (IV) or GMM. For TSL, Hayashi suggests that the schooling coefficient will be -529.3%. Compare this with your GMM results. Note that we now have a just-identified model (the number of instruments is equal to the number of regressors). This question also illustrate the problem of weak instruments and weak identification
Answer: 

This will be left as an exercise for participants to complete. See discussions in Hayashi page 254. 

Exercise 2: Empirical Exercise from Favero Chapter 3: Intertemporal optimisation and GMM method. This exercise illustrates how rational expectation models are estimated in EViews using GMM. We use the standard nonlinear consumption Euler equation approach of Hansen and Singleton (1983).  This method is applied to the consumer’s utility maximisation problem under uncertainty. Consider for example an agent who maximises the expected utility of current and future consumption by solving 
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where 
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denotes consumption in period t, 
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 is a constant discount factor and 
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denotes conditional expectation given 
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, the information set available to the agent at time t, for 
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. The rational expectations hypothesis suggests that if agents are rational, they will use all the available information at time t. The agent’s budget constraint is



[image: image15.wmf]1

(1)

ttttt

CArAY

-

+=++


where 
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denotes financial wealth at the end of the period t, 
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is the return on the financial wealth and 
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denotes labour income. This constraint implies that labour income plus asset income should be spent on consumption or saved in financial wealth. The first-order condition for optimality yields the following Euler equation: 
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. Note that a power (isoeslatic) utility asset pricing model is assumed, where the utility function is given as: 
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; where 
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 is the constant relative risk aversion parameter.
To estimate the parameters 
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 using GMM, we need at least two moment conditions.  Use the following form of the Euler equation for empirical implantation:  
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To estimate this model, we use a corrected version of the dataset used in Hansen and Singleton 1983; provided by Pesaran and Pesaran 1997
. The dataset covers monthly observations over the period 1959:3 to 1978:12 and contains the following variables: 
X1: ratio of consumption in time period 
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 to consumption in period 
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X2: one plus the one-period real return on stocks.

To set up the moment conditions we use lagged values of X1 and X2, along with a constant term as instruments. These moment conditions (which reflect the nature of the data in X1) can be written as:
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where 
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Question:

Estimate the nonlinear Euler equation using the first moment condition above. 
Answer:

To estimate the model, select Quick/Estimate Equation and chose GMM as the estimation method. Enter 
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 in the equation specification window and 
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in the instrument list window. Use the Bartlett weights and the Newey-West criterion to choose the lag truncation parameter. The estimated model should be:
	Dependent Variable: Implicit Equation

	Method: Generalized Method of Moments

	Date: 08/07/98   Time: 11:16

	Sample(adjusted): 1959:04 1978:12

	Included observations: 237 after adjusting endpoints

	No prewhitening

	Bandwidth: Fixed (4)

	Kernel: Bartlett

	Convergence achieved after: 3 weight matricies, 4 total coef iterations

	C(1)*(X1^C(2))*X2-1

	Instrument list: C X1(-1) X2(-1)

	
	Coefficient
	Std. Error
	t-Statistic
	Prob.  

	C(1)
	0.998082
	0.004465
	223.5548
	0.0000

	C(2)
	0.891202
	1.814987
	0.491024
	0.6239

	S.E. of regression
	0.041502
	    Sum squared resid
	0.404766

	Durbin-Watson stat
	1.828192
	    J-statistic
	0.006453


There is one over-identifying restriction (moments minus parameters). The calculated J-statistic is 
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which is distributed as chi-square with one degree of freedom. The probability of this estimate is 0.216 (the scalar gmmp1 in the workfile). We therefore do not reject the null hypothesis that the instruments are valid
Question:
Re-estimate the model without correcting for heteroscedasticity (HS) and serial correlation (SC). Does the result suggest that this correction is necessary? Use the parameter stability tests in EViews to check whether the parameters are stable over time. Is the model correctly specified? Use the Sargan statistic to check.
Answer:

Estimate using TSL, which is equivalent to estimating by GMM without correcting for HS and SC. First create a variable which is equal to zero: Quick/Generate Series and enter u=0 in the equation window. Estimate the following model using TSL; with lagged returns and consumption growth and a constant as instruments: 
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The estimated TSL model is given below (called eqivgmm in workfile):
	Dependent Variable: U

	Method: Two-Stage Least Squares

	Date: 08/07/98   Time: 11:47

	Sample(adjusted): 1959:04 1978:12

	Included observations: 237 after adjusting endpoints

	Convergence achieved after 1 iterations

	U=C(1)*(X1^C(2))*X2-1

	Instrument list: X1(-1) X2(-1) C

	
	Coefficient
	Std. Error
	t-Statistic
	Prob.  

	C(1)
	0.998945
	0.004947
	201.9470
	0.0000

	C(2)
	0.864734
	2.044036
	0.423052
	0.6726

	S.E. of regression
	0.041545
	    Sum squared resid
	0.405609

	Durbin-Watson stat
	1.829335
	
	
	


The parameters have not changed but notice the slight change in the standard errors. GMM estimates with Newey-West adjustments give the appropriate standard errors. The exercise for parameter stability and Sargan specification tests are left for homework.

General comments:

The estimation results (the valid over-identifying restrictions) suggests that, given our dataset, the consumption-based asset pricing model cannot be rejected, statistically. The GMM estimates are particularly attractive because the moment conditions minimum distributional assumptions about the predicted errors. It is however difficult to know which properties of the underlying distributions are being tested. Other tests of consumption-based asset pricing model use the nominal risk-free bond with stock returns. These models are a mostly rejected. Unfortunately, the chi-square statistic does not provide guidance as to what causes the rejection
.      
Exercise 3: Empirical Exercise from Favero Chapter 3: GMM and monetary policy rules – Estimating monetary policy reaction functions.  The approach taken here follows Clarida, Gali and Gertler (1998, 2000).  The dataset contains monthly observations from 1979:1-1996:12. It includes German and US data. 
Specification of Reaction Functions 
Define the central bank target for nominal short term interest rate, 
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where 
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is the long-run equilibrium nominal rate, 
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 is the rate of inflation over a one year horizon (12 reflecting the fact that we are using monthly data), 
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It is assumed that the actual rate, 
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 partially adjusts to the target as follows:
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where
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 is the smoothing parameter and 
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is an exogenous random shock to the interest rate.
 To estimate a baseline equation, define 
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 and re-write the partial adjustment mechanism (combined with the target for the nominal short term interest rate) as:
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Eliminate the unobservable variables and re-write the policy rule in terms of realised variables as follows:
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where 
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. 
To estimate the baseline mode (1.3) using GMM, we define the central bank’s instrument set, 
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, at the time it chooses the interest rate. This includes lagged values of GDP, inflation, interest rates, and commodity prices. This information set is orthogonal to the error term in the baseline equation; 
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. The baseline equation (1.3) therefore implies the following orthogonality conditions.
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Question:
Estimate the baseline policy rule for the Fed using GMM. Why do you think GMM estimation potentially produces better estimates of the parameters?
Answer:

The relevant US variables for this estimation are: usff – US Federal Funds rates; usinfl – is the change in the log of US consumer price index (uscp), over a 12-month period; usgap1 – the measure of the US output gap (measured as the deviation of the log of industrial production, usip, from a quadratic trend
; and pcm – the IMF world commodity price index in US dollars. 
The following (called equsrfc in cggrfc.wf1) are obtained by implementing GMM:
	Dependent Variable: USFF

	Method: Generalized Method of Moments

	Date: 04/28/04   Time: 17:09

	Sample(adjusted): 1982:10 1996:12

	Included observations: 171 after adjusting endpoints

	Kernel: Bartlett,  Bandwidth: Fixed (12),  No prewhitening

	Simultaneous weighting matrix & coefficient iteration

	Convergence achieved after: 69 weight matrices, 70 total coef iterations

	USFF= C(2)*USFF(-1) +(1-C(2))*(C(1)+C(3)*USINFL(+12) +C(4)

	        *USGAP1)

	Instrument list: C USGAP1(-1 TO -6)  USGAP1(-9) USGAP1(-12)

	        USINFL(-1 TO -6)  USINFL(-9) USINFL(-12) USFF(-1)  USFF(-6)

	        USFF(-9) USFF(-12) DLPCM(-1 TO -6)  DLPCM(-9) DLPCM(-12) 

	
	Coefficient
	Std. Error
	t-Statistic
	Prob.  

	C(2)
	0.929654
	0.012592
	73.83103
	0.0000

	C(1)
	2.875488
	0.991164
	2.901122
	0.0042

	C(3)
	1.730968
	0.251905
	6.871509
	0.0000

	C(4)
	0.665129
	0.100702
	6.604950
	0.0000

	R-squared
	0.983168
	    Mean dependent var
	6.713957

	Adjusted R-squared
	0.982865
	    S.D. dependent var
	2.191514

	S.E. of regression
	0.286867
	    Sum squared resid
	13.74289

	Durbin-Watson stat
	1.065694
	    J-statistic
	0.061172


C(1) = a0 = 2.87; C(2) = ρ = 0.92; C(3) = a1 = 1.73; and C(4) = a2 = 0.66. The J-statistics is distributed chi-square with 29 degrees of freedom (33 instruments minus 4 parameters). This is calculated my multiplying the EViews J-statistic by the sample size; 
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´=

. Given a critical value of between 37.65 and 43.77, the validity of the instrument and overall specification of the model cannot be rejected. Computation of the associated p-value as a scalar variable is left as an exercise. Comment on why GMM is likely to produce better estimates.
General Comments

The magnitude of the parameter a1 is critical here. When 
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, the target real rate is adjusted to stabilize inflation and output ( provided 
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, it instead moves to accommodate inflation. The central bank raises the nominal rate in response to an expected rise in inflation but it does not increase it sufficiently to keep real rate from declining. This can be seen clearly from Clarida, Gali and Gertler (1998, 2000) where it is shown that the ex-ante real interest rate (represented here to account of our 12-month forecast horizon), 
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 and the equilibrium relation for the real interest rate is given as:
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It has also been shown in Clarida, Gali and Gertler (1998, 2000) that it is possible to use the parameter estimates a1 and a2 the back out the central bank target inflation rate due to the relationship between the inflation target, 
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, and the long-run equilibrium real rate of interest, 
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, which implies that:
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Extracting the target inflation rate is left as an exercise for participants to complete. 
There are a number of extensions and other topical issues in relation to this model. Some of these will be explored in class discussions.
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� The syntax for this command is: TSLS Y X1 X2 X3 @ XS1 XS2 where Y is the dependent variable, the X’s the independent variable and the XS’ the instruments. There must be a space between the commands and the variables and also between the variables. 


� Econometric Theory and Methods, Oxford University Press.


� This problem is not unique to EViews but programs like GAUSS, RATS and S-Plus are very good at handling matrix singularity problems


� This restriction is imposed in order to ensure that the difference in the J-statistics of the two GMMs is positive.  


� EViews reserved commands can also be used to compute the p-value of the J-stat. see the EViews manual for details.


� This is a tutorial dataset for Microfit version 4.0. 


� Details of how to assess the nature of rejection of models estimated by GMM can be found in Matyas 1999.


� Relate this to our analysis of VAR’s and SVAR’s


� This is equivalent to the residuals from an OLS regression of the log of industrial production on a constant, a linear trend, and a quadratic trend. There are other methods of obtaining the output gap but we do not consider those here. There is a vast literature on this topic, which left to participants to explore. 
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