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CHAPTER 7 
Spectral Analysis
Spectral analysis is the name given to methods of estimating the spectral density function, or spectrum, of 
a given time series.
Before about 1900, research workers such as A.Schuster were essentially concerned with looking for ‘hidden 
periodicities’ in data at one or two specific frequencies. Spectral analysis as we know it today is concerned 
with estimating the spectrum over the whole range of frequencies. The techniques are widely used by many 
scientists, particularly in electrical engineering, physics, meteorology and marine science.
We are mainly concerned with purely indeterministic processes, which have a continuous spectrum, but the 
techniques can also be used for deterministic processes to pick out periodic components in the presence of 
noise.
7.1 Fourier Analysis
Traditional spectral analysis is essentially a modification of Fourier analysis so as to make it suitable for 
stochastic rather than deterministic functions of time. Fourier analysis (e.g. Priestley, 1981) is essentially 
concerned with approximating a function by a sum of sine and cosine terms, called the Fourier series 
representation. Suppose that a function ƒ(t) is defined on (−π, π]1 and satisfies the so-called Dirichlet 
conditions. These conditions ensure that ƒ(t) is reasonably ‘well behaved’, meaning that, over the range (−π, 
π], ƒ(t) is absolutely integrable, has a finite number of discontinuities, and has a finite number of maxima 
and minima. Then ƒ(t) may be approximated by the Fourier series

 
where

 
1 The different-shaped brackets indicate that the lower limit −π is not included in the interval, while the 
square bracket indicates that the upper limit +π is included.
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It can be shown that this Fourier series converges to ƒ(t) as k→∞ except at points of discontinuity, where it 
converges to halfway2 up the step change.
In order to apply Fourier analysis to discrete time series, we need to consider the Fourier series 
representation of ƒ(t) when ƒ(t) is defined only on the integers 1, 2,…, N. Rather than write down the 
formula, we demonstrate that the required Fourier series emerges naturally by considering a simple 
sinusoidal model.
7.2 A Simple Sinusoidal Model
Suppose we suspect that a given time series, with observations made at unit time intervals, contains a 
deterministic sinusoidal component at a known frequency , together with a random error term. Then we 
will consider the model

(7.1)
where Zt denotes a purely random process, and µ, α, β are parameters to be estimated from the data.
The observations will be denoted by (x1, x2 ,…, xN). The algebra in the next few sections is somewhat 
simplified if we confine ourselves to the case where N is even. There is no real difficulty in extending the 
results to the case where N is odd (e.g. Anderson, 1971), and indeed many of the later estimation formulae 
apply for both odd and even N, but some results require one to consider odd N and even N separately. Thus, 
if N happens to be odd and a spectral analysis is required, computation can be made somewhat simpler by 
removing the first observation so as to make N even. If N is reasonably large, little information is lost.
Expected values for the model in Equation (7.1) can be represented in matrix notation by

 
where

 
As this model is linear in the parameters µ, α and β, it is an example of a general linear model. In that case 

the least squares estimate of θ, which minimizes , is ‘well 
known’ to be

 
2 Mathematicians say that this is the average of the limit from below and the limit from above, sometimes 

written as .
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where

 
The above formulae hold for any value of the frequency , but they only make practical sense for values of 

 that are not too high or too low. As noted in Section 6.2, the highest frequency we can uniquely fit to the 
data is the Nyquist frequency, given by =π, which completes one cycle every two observations. At the 
other end of the spectrum, the lowest frequency we can reasonably fit completes one cycle in the whole 
length of the time series. These upper and lower limits will be explained further in Section 7.2.1 below. By 

equating the cycle length  to N, we find that the lowest frequency is given by 2π/N. The formulae for 

the least squares estimates of  turn out to be particularly simple if , is restricted to one of the values

 
which lie in equal steps from the lowest frequency 2π/N to the Nyquist frequency π. In this case, it turns out 
that (ATA) is a diagonal matrix in view of the following ‘well-known’ trigonometric results (all summations are 
for t=1 to N):

(7.2)

(7.3)

(7.4)

(7.5)
With (ATA) diagonal, it is easy to evaluate the least squares estimate of θ, as the inverse (ATA)−1 will also 
be diagonal. For  such that p≠N/2, we find (Exercise 7.2)

(7.6)
If p=N/2, we ignore the term in β sin , which is zero for all t, and find

(7.7)
The model in Equation (7.1) is essentially the one used before about 1900 to search for hidden periodicities, 
but this model has now gone out of fashion. However, it can still be useful if there is reason to suspect that a 
time series 
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does contain a deterministic periodic component at a known frequency and it is desired to isolate this 
component (e.g. Bloomfield, 2000, Chapters 2, 3).
Readers who are familiar with the analysis of variance (ANOVA) technique will be able to work out that the 
total corrected sum of squared deviations, namely,

 
can be partitioned into two components, namely, the residual sum of squares and the sum of squares 
‘explained’ by the periodic component at frequency . This latter component is given by

 
which, after some algebra (Exercise 7.2), can be shown to be

(7.8)
using Equations (7.2)–(7.5).
7.2.1 The highest (Nyquist) frequency and the lowest (fundamental) frequency
When fitting the simple sinusoidal model in Equation (7.1), we restricted the frequency  to one of the 
values (2π/N, 4π/N,…, π), assuming that N is even. Here we examine the practical rationale for the upper 
and lower limits, namely, π and 2π/N.
In Section 6.2, we pointed out that, for a discrete-time process measured at unit intervals of time, there is no 
loss of generality in restricting the spectral distribution function to the range (0, π). We now demonstrate 
that the upper bound π, called the Nyquist frequency, is indeed the highest frequency about which we can 
get meaningful information from a set of data.
First, we give a more general form for the Nyquist frequency. If observations are taken at equal intervals of 

time of length Δt, then the Nyquist (angular) frequency is given by . The equivalent 

frequency expressed in cycles per unit time is .
Consider the following example. Suppose that temperature readings are taken every day in a certain town at 
noon. It is clear that these observations will tell us nothing about temperature variation within a day. In 
particular, they will not tell us whether nights are hotter or cooler than days. With only one observation per 

day, the Nyquist frequency is  radians per day or  cycle per day (or 1 cycle per 2 days). 
This is lower than the frequencies, which correspond to variation within a day. For example, variation with a 
period of 1 day has (angular) frequency  radians per day or f=1 cycle per day. In order to get 
information about variation within 
< previous page page_124 next page >

file:///C:/Documents and Settings/Yang/桌面/The analysis of time series an introduction/files/page_124.html [5/24/2009 16:52:13]



page_125

< previous page page_125 next page >
Page 125
a day at these higher frequencies, we must increase the sampling rate and take two or more observations 
per day.
A similar example is provided by yearly sales figures. These will obviously give no information about any 
seasonal effects, whereas monthly or quarterly observations will give information about seasonality.
At the other end of the spectrum, we will now explain why there is a lowest frequency below which it is not 
sensible to try to fit to a set of data. If we had just 6 months of temperature readings from winter to 
summer, the analyst would not be able to decide, from the data alone, whether there is an upward trend in 
the observations or whether winters are colder than summers. However, with 1 year’s data, it would become 
clear that winters are colder than summers. Thus if we are interested in variation at the low frequency of 1 
cycle per year, then we should have at least 1 year’s data, in which case the lowest frequency we can fit is at 
1 cycle per year. With weekly observations, for example, 1 year’s data have N=52, Δt=1 week, and the 
lowest angular frequency of 2π/NΔt corresponds to a frequency of 1/NΔt cycles per week. (Note that all time 
units must be expressed in terms of the same period, here a week.) The lowest frequency is therefore 1/52 
cycles per week, which can now be converted to 1 cycle per year.
The lowest frequency, namely, 2π/NΔ, is sometimes called the fundamental Fourier frequency, because 

the Fourier series representation of the data is normally evaluated at the frequencies  for 
p=1,…, N/2, which are all integer multiples of the fundamental frequency. These integer multiples are often 
called harmonics. The phrase fundamental frequency is perhaps more typically, and more helpfully, used 
when a function, ƒ(t) say, is periodic with period T so that f(t+nT)=f(t) for all integer values of n. Then f=1/

T, or , is called the fundamental frequency and the Fourier series representation of ƒ(t) is a 
sum over integer multiples, or harmonics, of the fundamental frequency. When T= NΔ=(the length of the 
observed time series), the fundamental frequencies coincide. This raises a practical point, in regard to 
choosing the length of a time series. Suppose, for example, that you are collecting weekly data and are 
particularly interested in annual variation. As noted above, you should collect at least 1 year’s data. If you 
collect exactly 52 weeks of data3, then the fundamental frequency will be at exactly 1 cycle per year. We will 
see that this makes it much easier to interpret the results of a spectral analysis. The fundamental frequency 
is at 1 cycle per year and the harmonics are at 2 cycles per year, 3 cycles per year and so on. However, if 
you have say an extra 12 weeks of data making 64 weeks, then it will be much harder to interpret the results 

at frequencies . Wherever possible, you should choose the length of the time series so 
that the harmonics cover the frequencies of particular interest. The easiest option is to collect observations 
covering an integer multiple of the lowest wavelength of particular interest. This ensures 
3 For simplicity, ignore day 365, and day 366 if a leap year.
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that this frequency is an integer multiple of the fundamental frequency. Thus, to investigate annual variation, 
2 years of data is good and 3 or 4 years of data even better.
The reader will notice that the Nyquist frequency does not depend on N, but rather only on the sampling 
frequency, whereas the lowest frequency does depend on N. Put another way, the lower the frequency we 
are interested in, the longer the time period over which we need to take measurements, whereas the higher 
the frequency we are interested in, the more frequently must we take observations.
7.3 Periodogram Analysis
Early attempts at discovering hidden periodicities in a given time series basically consisted of repeating the 
analysis of Section 7.2 at all the frequencies 2π/N, 4π/N,…, π. In view of Equations (7.3)–(7.5), the different 
terms are orthogonal and we end up with the finite Fourier series representation of the {xt}, namely

(7.9)
for t=1, 2,…, N, where the coefficients {ap, bp} are of the same form as Equations (7.6) and (7.7), namely

(7.10)
An analysis along these lines is sometimes called a Fourier analysis or a harmonic analysis. The Fourier 
series representation in Equation (7.9) has N parameters to describe N observations and so can be made to 
fit the data exactly (just as a polynomial of degree N−1 involving N parameters can be found that goes 
exactly through N observations in polynomial regression). This explains why there is no error term in 
Equation (7.9) in contrast to Equation (7.1). Also note that there is no term in sin πt in Equation (7.9) as sin 
πt is zero for all integer t.
It is worth stressing that the Fourier series coefficients in Equation (7.10) at a given frequency  are exactly 
the same as the least squares estimates for the coefficients of the model in Equation (7.1).
The overall effect of the Fourier analysis of the data is to partition the variability of the series into 

components at frequencies 2π/N, 4π/N,…, π. The component at frequency  is called the pth 
harmonic. For 
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p≠N/2, it can be useful to write the pth harmonic in the equivalent form

(7.11)
where

(7.12)
is the amplitude of the pth harmonic, and

(7.13)
is the phase of the pth harmonic.
We have already noted in Section 7.2 that, for p≠N/2, the contribution of the pth harmonic to the total sum 

of squares is given by  Using Equation (7.12), this is equal to . Extending this 
result using Equations (7.2)–(7.5) and (7.9), we have, after some algebra (Exercise 7.3), that

 
Dividing through by N we have

(7.14)
which is known as Parseval’s theorem. The left-hand side of Equation (7.14) is effectively the variance4 of 

the observations. Thus  is the contribution of the pth harmonic to the variance, and Equation (7.14) 
shows how the total variance is partitioned.

If we plot  against , we obtain a line spectrum. A different type of line spectrum 
occurs in the physical sciences when light from molecules in a gas discharge tube is viewed through a 
spectroscope. The light has energy at discrete frequencies and this energy can be seen as bright lines. 
However, most time series have continuous spectra, and then it is inappropriate to plot a line spectrum. If we 

regard  as the contribution to variance in the range , we can plot a histogram whose 

height in the range  is such that

 
Thus the height of the histogram at , denoted by I( ), is given by

(7.15)

As usual, Equation (7.15) does not apply for p=N/2; we may regard  as the contribution to variance in 
the range [(N−1)π/N, π] so that

 
4 The divisor is N rather than the more usual (N−1), but this makes little difference for large N.
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The plot of  against  is usually called the periodogram, even though  is a function of 
frequency rather than period. It follows from Parseval’s theorem in Equation (7.14) that the total area under 
the periodogram is equal to the variance of the time series.

Note that the formula for  and hence for , can be written in several equivalent ways that look quite 
different. For example, after some algebra, it can be shown that

(7.16)
or we can replace  with  in Equation (7.16). The usual way to actually calculate the periodogram 
directly from the data uses the expression

(7.17)
Equation (7.17) also applies for p=N/2.
Other authors define the periodogram in what appear to be slightly different ways, but the differences usually 

arise from allowing negative frequencies or using the cyclic frequency , rather than . The 

expressions generally turn out to be some other multiple of I(ωp) or . For example, Hannan (1970, 

Equation (3.8)) and Koopmans (1995, Equation (8.7)) give expressions that correspond to ×expression 

(7.16). As to terminology, Anderson (1971, Section 4.3.2) describes the graph of  against the period N/p, 

as the periodogram, and suggests the term spectrogram to describe the graph of  against frequency. 
Jenkins and Watts (1968) define a similar expression to Equation (7.17) in terms of the variable 

, but call it the ‘sample spectrum’. As always, when comparing terms and formulae from 
different sources, the reader needs to take great care.
The periodogram appears to be a natural way of estimating the power spectral density function, but Section 
7.3.2 shows that, for a process with a continuous spectrum, it provides a poor estimate and needs to be 
modified. First, we derive the relationship between the periodogram of a given time series and the 
corresponding autocovariance function (acv.f.).
7.3.1 The relationship between the periodogram and the acv.f.

The periodogram ordinate  and the autocovariance coefficient ck are both quadratic forms of the data 
{xt}. It is therefore natural to enquire how they are related. In fact, we will show that the periodogram is the 
finite Fourier transform of {ck}.
Using Equation (7.2), we may rewrite Equation (7.17) for p≠N/2 as
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However, (see Equation (4.1))

 

and 
so that

(7.18)

(7.19)
The formula in Equation (7.19) is an expression called a discrete finite Fourier transform (assuming that 
ck=0 for |k| ≥N). Any reader not familiar with the Fourier transform, is recommended to read Appendix A—
see especially Equation (A.5).
7.3.2 Properties of the periodogram
When the periodogram is expressed in the form of Equation (7.18), it appears to be the ‘obvious’ estimate of 
the power spectrum

 
simply replacing γk by its estimate ck for values of k up to (N−1), and putting subsequent estimates of γk 
equal to zero. However, although we find

(7.20)

so that the periodogram is asymptotically unbiased, we see below that the variance of  does not 

decrease as N increases. Thus  is not a consistent estimator for . An example of a periodogram is 
given later in Figure 7.5(c), and it can be seen that the graph fluctuates wildly. The lack of consistency is 
perhaps not too surprising when one realizes that the Fourier series representation in Equation (7.9) requires 
one to evaluate N parameters from N observations, however long the series may be. Thus in Section 7.4 we 
will consider alternative ways of estimating a power spectrum that are essentially ways of smoothing the 
periodogram.

We complete this section by proving that  is not a consistent estimator for  in the case where the 
observations are assumed to be independent N(µ, σ2) variates, so that they form a discrete-time purely 
random process with a uniform spectrum. This result can be extended to other stationary 
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processes with continuous spectra, but this does not need to be demonstrated here. If the periodogram 
estimator does not ‘work’ for a uniform spectrum, it cannot be expected to ‘work’ for more complicated 
spectra. Given the above assumptions, Equation (7.10) shows that ap and bp are linear combinations of 
normally distributed random variables and so will themselves be normally distributed. Using Equations (7.2)–
(7.4), it can be shown (Exercise 7.4) that ap and bp each have mean zero and variance 2σ2/N for p≠N/2. 
Furthermore we have

 
since the observations are assumed to be independent. Thus, using Equation (7.5), we see that ap and bp 
are uncorrelated. Since (ap, bp) are bivariate normal, zero correlation implies that ap and bp are 

independent. The variables ap and bp can be standardized by dividing by  to give standard N(0, 
1) variables. Now a result from distribution theory says that if Y1, Y2 are independent N(0, 1) variables, then 

 has a X2 distribution with two degrees of freedom, which is written . Thus

 

is . Put another way, this means that  is  when  as in this case, 
although this result does, in fact, generalize to spectra that are not constant. Now the variance of a X2 
distribution with v degrees of freedom is 2v, so that

 
and

 

As this variance is a constant, it does not tend to zero as N→∞, and hence  is not a consistent 

estimator for . Furthermore it can be shown that neighbouring periodogram ordinates are 
asymptotically independent, which further explains the very irregular form of an observed periodogram. This 
all means that the periodogram needs to be modified in order to obtain a good estimate of a continuous 
spectrum.
7.4 Some Consistent Estimation Procedures
This section describes several alternative ways of estimating a spectrum. The different methods will be 
compared in Section 7.6. Each method provides a consistent estimator for the (power) spectral density 
function, in contrast to the (raw) periodogram. However, although the periodogram is itself an inconsistent 
estimator, the procedures described in this section are essentially based on smoothing the periodogram in 
some way.
Throughout the section we will assume that any obvious trend and seasonal 
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variation have been removed from the data. If this is not done, the results of the spectral analysis are likely 
to be dominated by these effects, making any other effects difficult or impossible to see. Trend produces a 
peak at zero frequency, while seasonal variation produces peaks at the seasonal frequency and at integer 
multiples of the seasonal frequency—the seasonal harmonics (see Section 7.2.1). For a nonstationary 
series, the estimated spectrum of the detrended, deseasonalized data will depend to some extent on the 
method chosen to remove trend and seasonality. We assume throughout that a ‘good’ method is used to do 
this.
The methods described in this chapter are essentially non-parametric in that no model fitting is involved. It is 
possible to use a model-based approach and an alternative, parametric approach, called autoregressive 
spectrum estimation, will be introduced later in Section 13.7.1.
7.4.1 Transforming the truncated acv.f.
One type of estimation procedure consists of taking a Fourier transform of the truncated weighted sample 
acv.f. From Equation (7.18), we know that the periodogram is the discrete finite Fourier transform of the 
complete sample acv.f. However, it is clear that the precision of the values of ck decreases as k increases, 
because the coefficients are based on fewer and fewer terms. Thus, it would seem intuitively reasonable to 
give less weight to the values of ck as k increases. An estimator, which has this property is

(7.21)
where {λk} are a set of weights called the lag window, and M(<N) is called the truncation point. 
Comparing Equation (7.21) with (7.18) we see that values of ck for M<k<N are no longer used, while values 
of ck for k≤M are weighted by a factor λk. The latter are chosen so as to get smaller as k approaches M.
In order to use the above estimator, the analyst must choose a suitable lag window and a suitable truncation 
point. The two best-known lag windows are as follows.
Tukey window 

 
This window is sometimes called the Tukey-Hanning or Blackman-Tukey window. 
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Parzen window 

 
These two windows are illustrated in Figure 7.1 with M=20.

 
Figure 7.1 The Tukey and Parzen lag windows with M=20.
The Tukey and Parzen windows give very similar estimated spectra for a given time series, although the 
Parzen window has a slight advantage in that it cannot give negative estimates. Many other lag windows 
have been suggested and ‘window carpentry’ was a popular research topic in the 1950s. Ways of comparing 
different windows will be discussed in Section 7.6. The well-known Bartlett window, with λk=1−k/M for 
k=0, 1,…, M, is very simple but is now rarely used as its properties are inferior to those of the Tukey and 
Parzen windows.
The choice of the truncation point M is more difficult and it is not easy to give clear-cut advice. It has to be 
chosen subjectively so as to balance ‘resolution’ against ‘variance’. The smaller the value of M, the smaller 

will be the variance of  but the larger will be the bias. If M is too small, important features of f( ) may 

be smoothed out, but if M is too large the behaviour of  becomes more like that of the periodogram 
with erratic variation. Thus a compromise value must be chosen. A useful rough guide is to choose M to be 

about , so that if, for example, N is 200, then M will be round about the value 28. This choice of M 
ensures the asymptotic situation that as N→∞, so also does M→∞ but in such a way that M/N→0. A 
somewhat larger value of M is required for the Parzen window than for the Tukey window. Other writers have 

suggested  rather than 
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, while results from density estimation suggest that a different power of N may be appropriate. 
Percival and Walden (1993, Chapter 6) point out that an appropriate value of M depends on the properties of 
the underlying process and give more detailed guidance. However, my advice is to try three or four different 
values of M. A low value will give an idea where the large peaks in f( ) are, but the curve is likely to be too 
smooth. A high value is likely to produce a curve showing a large number of peaks, some of which may be 
spurious. A compromise can then be achieved with an in-between value of M.
In principle, Equation (7.21) may be evaluated at any value of  in (0, π), but it is usually evaluated at equal 

intervals at  for j=0, 1…, Q, where Q is chosen sufficiently large to show up all features of 

. Often Q is chosen to be equal to M. The graph of  against  can then be plotted and 
examined. An example is given later in Figure 7.5, for the data plotted in Figure 1.2, using the Tukey window 
with M=24.
7.4.2 Hanning
This procedure, named after Julius Von Hann, is equivalent to the use of the Tukey window as described in 
Section 7.4.1, but adopts a different computational procedure. The estimated spectrum is calculated in two 
stages. First, a truncated unweighted cosine transform of the acv.f. of the data is taken to give

(7.22)
This is the same as Equation (7.21) except that the lag window is taken to be unity (i.e. λk=1). The 

estimates given by Equation (7.22) are calculated at  for j=0, 1,…, M. These estimates are then 

smoothed using the weights  to give the Hanning estimates

(7.23)

at  for j=1, 2 ,…, (M−1). At zero frequency, and at the Nyquist frequency π, we take

 
It can easily be shown algebraically that this procedure is equivalent to the use of the Tukey window. 
Substituting Equation (7.22) into (7.23) we find
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and, using , a comparison with 
Equation (7.21) shows that the lag window is indeed the Tukey window.
There is relatively little difference in the computational efficiency of Hanning and the straightforward use of 
the Tukey window. Both methods should yield the same estimates and so it does not matter which of the two 
procedures is used in practice.
7.4.3 Hamming
This technique is very similar to Hanning and has a very similar title, which sometimes leads to confusion. In 
fact Hamming is named after a quite different person, namely R.W.Hamming. The technique is nearly 

identical to Hanning except that the weights  in Equation (7.23) are changed to (0.23, 0.54, 0.23). 
At the frequencies =0 and =π, the weights are 0.54 (at the ‘end’ frequency) and 0.46. The procedure 
gives similar estimates to those produced by Hanning.
7.4.4 Smoothing the periodogram
The methods of Sections 7.4.1–7.4.3 are based on transforming the truncated sample acv.f. An alternative 
type of approach is to smooth the periodogram ordinates in some way, the simplest approach being to group 
the periodogram ordinates in sets of size m and find their average value. The latter approach is based on a 
suggestion made by P.J.Daniell as long ago as 1946. However, the use of lag window estimators was 
standard for many years because less computation was involved. Nowadays, some form of smoothed 
periodogram is used much more widely, particularly with the advent of the fast Fourier transform—see 
Section 7.4.5.
The basic idea of the simple smoothed periodogram can be expressed in the following formula:

(7.24)

where  and j varies over m consecutive integers so that the  are symmetric about the 

frequency of interest, namely, . In order to estimate  at the end-points =0 and =π, Equation 
(7.24) has to be modified in an obvious way, treating the periodogram as being symmetric about 0 and π. 
Then, taking m to be odd with m*=(m−1)/2, we have
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The expression for (0) can be simplified as the first term I(0) is zero.
Now we know that the periodogram is asymptotically unbiased but inconsistent for the true spectrum. Since 
neighbouring periodogram ordinates are asymptotically uncorrelated, it is clear that the variance of Equation 
(7.24) will be of order 1/m. It is also clear that the estimator in Equation (7.24) may be biased since

 

which is only equal to  if the spectrum is linear over the relevant interval. However, the bias will be 

‘small’ provided that  is a reasonably smooth function and m is not too large compared with N.
The consequence of the above remarks is that the choice of group size m is rather like the choice of the 
truncation point M in Section 7.4.1 in that it has to be chosen so as to balance resolution against variance. 
However, the choice is different in that changes in m and in M act in opposite directions. An increase in m 
has a similar effect to a reduction in M. The larger the value of m the smaller will be the variance of the 

resulting estimate but the larger will be the bias. If m is too large, then interesting features of , such as 
peaks, may be smoothed out. Of course, as N increases, we can in turn allow m to increase, just as we 
allowed M to increase with N in Section 7.4.1.
There is relatively little advice in the literature on the choice of m. As in Section 7.4.1, it seems advisable to 

try several values for m. A ‘high’ value should give some idea as to whether large peaks in  exist, but 
the curve is likely to be too smooth and some real peaks may be hidden. A ‘low’ value is likely to produce a 
much more uneven curve showing many peaks, some of which will be spurious. A compromise between the 
effects of bias and variance can then be made. In earlier editions, I suggested trying values near N/40, but I 

now think that  is probably a better guideline.
Although the procedure described in this section is computationally quite different to that of Section 7.4.1, 
there are in fact close theoretical links between the two procedures. In Section 7.3.1 we derived the 
relationship between the periodogram and the sample acv.f., and, if we substitute Equation (7.18) into 
(7.24), we can express the smoothed periodogram estimate of the spectrum in terms of the sample acv.f. in 
a similar form to Equation (7.21). After some algebra (Exercise 7.5), it can be shown that the truncation 
point is (N−1) and the lag window is given by

 
Thus, the formula uses values of ck right up to k=(N−1), rather than having a truncation point much lower 
than N. Moreover, the lag window has the undesirable property that it does not tend to zero as k tends to N. 
The smoothed periodogram effectively uses a rectangular window in the frequency domain and the resulting 
lag window shows that a sudden cut-off in the frequency domain can give rise to ‘nasty’ effects in the time 
domain 
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(and vice versa). The smoothed periodogram often works reasonably well, but its window properties suggest 
that it may be possible to find a way of smoothing the periodogram, using a non-uniform averaging 
procedure, that has better time-domain properties. In fact, the simple smoothed periodogram is rarely used 
today, but rather a windowed form of averaging is used instead. Various alternative smoothing procedures 
have been suggested, with the idea of giving more weight to the periodogram ordinate at the particular 
frequency of interest and progressively less weight to periodogram ordinates further away. The analyst can 
think of this as applying a window in the frequency domain rather than in the time domain, but in a way that 
corresponds to the use of a lag window as in Section 7.4.1. It is possible to use a triangular (Bartlett window) 
or aim for a bell-shaped curve, perhaps by applying a simple smoother, such as Hanning, more than once. 
These approaches will not be considered here and the reader is referred, for example, to Hayes (1996, 
Chapter 8) or Bloomfield (2000, Chapter 8).
Historically, the smoothed periodogram was not much used until the 1990s because it apparently requires 
much more computational effort than transforming the truncated acv.f. Calculating the periodogram using 
Equation (7.17) at  for p=1, 2,…, N/2 would require about N2 arithmetic operations (each one a 
multiplication and an addition), whereas using Equation (7.21) fewer than MN operations are required to 
calculate the {ck} so that the total number of operations is only of order M(N+M) if the spectrum is 
evaluated at M frequencies. Two factors have led to the increasing use of the smoothed periodogram. First, 
the advent of high-speed computers means that it is unnecessary to restrict attention to the method 
requiring fewest calculations. The second factor has been the widespread use of an algorithm called the fast 
Fourier transform, which makes it much quicker to compute the periodogram. This procedure will now be 
described.
7.4.5 The fast Fourier transform (FFT)
The computational procedure described in this section is usually abbreviated to FFT5 and we adopt this 
abbreviation. For long series, the technique can substantially reduce the time required to perform a Fourier 
analysis of a set of data on a computer, and can also give more accurate results.
The history of the FFT dates back to the early 1900s. However, it was the work of J.W.Cooley, J.W.Tukey 
and G.Sande in about 1965 coupled with the arrival of faster computers that stimulated the application of the 
technique to time-series analysis. Much of the early work was published in the various Transactions of the 
IEEE, but more recent coverage is given, for example, by Bendat and Piersol (2000), Bloomfield (2000) and 
Priestley (1981). We will only give a broad outline of the technique here.
The FFT requires that the value of N should be composite, meaning that 
5 Some authors have used this abbreviation to denote the finite Fourier transform.
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N is not a prime number and so can be factorized. The basic idea of the FFT will be illustrated for the case 
when N can be factorized in the form N=rs, where r and s are integers. If we assume that N is even, then at 
least one of the factors, say r, will be even. Using complex numbers for mathematical simplicity, the Fourier 
coefficients from Equation (7.10) can be expressed in the form

(7.25)
for p=0, 1, 2 ,…, (N/2)−1. For mathematical convenience, we denote the observations by x0, x1,…, xN−1, so 
that the summation in Equation (7.25) is from t=0 to N−1. Now we can write t in the form

 
where t1=0, 1,…, s−1, and t0=0, 1,…, r−1, as t goes from 0 to N−1, in view of the fact that N=rs. Similarly 
we can decompose p in the form

 
where p1=0, 1,…, (r/2)−1, and P0=0, 1,…, s−1, as p goes from 0 to (N/2)−1. Then the summation in 
Equation (7.25) may be written

 
However,

 

since . Thus  does not depend on 
p1 and is therefore a function of t0 and P0 only, say A(p0, t0). Then Equation (7.25) may be written

 
Now there are N=rs functions of type A(p0, t0) to be calculated, each requiring s complex multiplications and 
additions. There are N/2 values of (ap+ibp) to be calculated, each requiring r further complex multiplications 

and additions. This gives a grand total of  calculations instead of the 
N×N/2=N2/2 calculations required to use Equation (7.25) directly. By a suitable choice of s and r, we can 
usually arrange for (s+r/2) to be (much) less than N/2.
Much bigger reductions in computing can be made by an extension of the above procedure when N is highly 
composite (i.e. has many small factors). In particular, if N is of the form 2k, then we find that the number of 
operations is of order Nk (or N log2 N) instead of N2/2. Substantial gains can also be made when N has 
several factors (e.g. N=2p3q5r…).
In practice it is unlikely that N will naturally be of a simple form such as 2k, unless the value of N can be 
chosen before measurement starts. However, there 
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are other things we can do. It may be possible to make N highly composite by the simple expedient of 
omitting a few observations from the beginning or end of the series. For example, with 270 observations, we 
can omit the last 14 to make N=256=28. More generally we can increase the length of the series by adding 
zeros to the (mean-corrected) sample record until the value of the revised N becomes a suitable integer. 
Then a procedure called tapering or data windowing (e.g. Percival and Walden, 1993; Priestley, 1981) is 
often recommended6 to avoid a discontinuity at the end of the data. Suppose, for example, that we happen 
to have 382 observations. This value of N is not highly composite and we might proceed as follows:
• Remove any linear trend from the data, and keep the residuals (which should have mean zero) for 
subsequent analysis. If there is no trend, simply subtract the overall mean from each observation.
• Apply a linear taper to about 5% of the data at each end. In this example, if we denote the detrended 
mean-corrected data by x0, x1,…, x381, then the tapered series is given by

 
• Add 512−382=130 zeros at one end of the tapered series, so that N=512=29.
• Carry out an FFT on the data, calculate the Fourier coefficients ap+ibp and average the values of 

 in groups of about 10.
In fact with N as low as 382, the computational advantage of the FFT is limited and we could equally well 
calculate the periodogram directly, which avoids the need for tapering and adding zeros. The FFT really 
comes into its own when there are several thousand observations.
It is also worth explaining that the FFT is still useful when the analyst prefers to look at the autocorrelation 
function (ac.f.) before carrying out a spectral analysis, either because inspecting the ac.f. is thought to be an 
invaluable preliminary exercise or because the analyst prefers to transform the truncated weighted acv.f. 
rather than smooth the periodogram. It can be quicker to calculate the sample acv.f. by performing two FFTs 
(e.g. Priestley, 1981, Section 7.6), rather than directly as a sum of lagged products. The procedure is as 

follows. Compute the Fourier coefficients (ap, bp) with an FFT of the mean-corrected data at  
for p=0, 1,…, N−1 rather than for p=0, 1,…, N/2 as we usually do. The extra coefficients are normally 
redundant for real-valued processes since aN−k=ak and bN−k=−bk. However, for calculating the 

autocovariances, we can compute  at these values of p and then fast Fourier retransform 

the sequence  to 
6 Note that some researchers view tapering with suspicion as the data are modified—see, for example, the 
discussion in Percival and Walden (1993, p. 215).
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get the mean lagged products. We will not give the algebra here. For several thousand observations, this can 
be much faster than calculating them directly. However, when using the FFT in this way, the analyst should 
take care to add enough zeros to the data (without tapering) to make sure that non-circular sums of 
lagged products are calculated, as defined by Equation (4.1) and used throughout this book. Circular 
coefficients result if zeros are not added where, for example, the circular autocovariance coefficient at lag 1 is

 
where xN+1 is taken to be equal to x1 to make the series ‘circular’. Note that, if x1= , then the circular and 
non-circular coefficients at lag 1 are the same. If we use mean-corrected data, which will have mean zero, 
then adding zeros will make circular and non-circular coefficients be the same. In order to calculate all the 
non-circular autocovariance coefficients of a set of N mean-corrected observations, the analyst should add N 
zeros, to make 2N ‘observations’ in all.
7.5 Confidence Intervals for the Spectrum
The methods of Section 7.4 all produce point estimates of the spectral density function, and hence give no 
indication of their likely accuracy. This section shows how to find appropriate confidence intervals.
In Section 7.3.2, we showed that data from a white noise process, with constant spectrum 

, yields a periodogram ordinate  at frequency , which is such that  is 

distributed as . Note that this distibution does not depend on N, which explains why  is not a 

consistent estimator for . Wide confidence intervals would result if  was used as an estimator. 
Suppose instead that we use the estimator of Section 7.4.1, namely

 

Then, it can be shown (Jenkins and Watts, 1968, Section 6.4.2) that  is asymptotically 

distributed as an approximate  random variable, where

(7.26)
is called the number of degrees of freedom of the lag window. It follows that

 

so that a 100(1−α)% confidence interval for  is given by 
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Some simple algebra shows that the degrees of freedom for the Tukey and Parzen windows turn out to be 
2.67N/M and 3.71N/M, respectively. Although relying on asymptotic results, Neave (1972a) has shown that 
the above formulae are also quite accurate for short series.
For the smoothed periodogram estimator of Section 7.4.4, there is no need to apply Equation (7.26), because 

smoothing the periodogram in groups of size m is effectively the same as averaging independent  random 
variables. Thus, it is clear that the smoothed periodogram will have v=2m degrees of freedom, and we can 
then apply the same formula for the confidence interval as given above.
7.6 Comparison of Different Estimation Procedures
Several factors need to be considered when comparing the different estimation procedures that were 
introduced in Section 7.4. Although we concentrate on the theoretical properties of the different procedures, 
the analyst will also need to consider practical questions such as computing time and the availability of 
suitable computer software. Alternative comparative discussions are given by Jenkins and Watts (1968), 
Neave (1972b), Priestley (1981, Section 7.5) and Bloomfield (2000).
It is helpful to introduce a function called the spectral window or kernel, which is defined to be the 
Fourier transform of the lag window { k} introduced in Equation (7.21). Assuming that k is zero for k>M, 
and symmetric, so that  then the spectral window is defined by

(7.27)
for (−π< <π)7. The corresponding inverse Fourier transform is given by

(7.28)
All the estimation procedures for the spectrum that we have studied so far can be put in the general form

 
7 Note that we cannot avoid negative frequencies here, as the spectral window looks at differences in 
frequency from some specified frequency. If the lag window is symmetric about zero, then so is .
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(7.29)
using Equation (7.19). Equation (7.29) shows that all the estimation procedures are essentially smoothing the 

periodogram using the weight function . The value of the lag window at lag zero is usually specified to 
be one, so that from Equation (7.28) we have

 
which is a desirable property for a smoothing function.
Taking expectations in Equation (7.29) we have asymptotically that

(7.30)
Thus the spectral window is a weight function expressing the contribution of the spectral density function at 

each frequency to the expectation of . The name ‘window’ arises from the fact that  determines 
the part of the periodogram that is ‘seen’ by the estimator. 

 
Figure 7.2 The spectral windows for three common methods of spectral analysis: A, smoothed periodogram 
(m=20); B, Parzen (M=93); C, Tukey (M=67); all with N=1000.
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Examples of the spectral windows for three common methods of spectral analysis are shown in Figure 7.2. 
Taking N=1000, the spectral window for the smoothed periodogram with m=20 is shown as line A. The other 
two windows are the Parzen and Tukey windows, denoted by lines B and C. The values of the truncation 
point M were chosen to be 93 for the Parzen window and 67 for the Tukey window. These values of M were 
chosen so that all three windows gave estimators with equal variance. Formulae for variances will be given 
later in this section.
Inspecting Figure 7.2, we see that the Parzen and Tukey windows look very similar, although the Parzen 
window has the advantage of being non-negative and of having smaller side lobes. The shape of the 
periodogram window is quite different. It is approximately rectangular with a sharp cut-off and is close to the 
‘ideal’ band-pass filter, which would be exactly rectangular but which is unattainable in practice. The 
periodogram window also has the advantage of being non-negative.
In comparing different windows, we should consider both the bias and the variance of the estimator. This is 
sometimes called the variance-bias trade-off question, as well as balancing resolution against variance. By 
taking a wider window, we generally get a lower variance but a larger bias and some sort of compromise has 
to be made in practice. This is often achieved by using trial and error, as, for example, in the choice of the 
truncation point for a lag window as discussed earlier in Section 7.4.1. It is not easy to get general formulae 
for the bias produced by the different procedures. However, it is intuitively clear from Equation (7.30) and 
from earlier remarks that the wider the window, the larger will be the bias. In particular, it is clear that all the 
smoothing procedures will tend to lower peaks and raise troughs.

As regards variance, we noted in Section 7.5 that  is approximately distributed as , where 
v=2m, for the smoothed periodogram, and, using Equation (7.26), 3.71N/M and 8N/3M for the Parzen and 
Tukey windows, respectively. Since

 
and

 

we find  turns out to be 1/m, 2M/3.71N, and 3M/4N, respectively, for the three windows. 
Equating these expressions gives the values of M chosen for Figure 7.2.
When comparing the different estimators, the notion of a bandwidth may be helpful. Roughly speaking, the 
bandwidth is the width of the spectral window, as might be expected. Various formal definitions are given in 
the literature, but we adopt the one given by Jenkins and Watts (1968), namely, the width of the ‘ideal’ 
rectangular window that would give an estimator with the same variance. The window of the smoothed 
periodogram is so close to being rectangular for m ‘large’ that it is clear from Figure 7.2 that the bandwidth 
will be approximately 2mπ/N (as area must be unity and height 
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is N/2mπ). The bandwidths for the Bartlett, Parzen and Tukey windows turn out to be 3/2M, 2π(1.86/M) and 
8π/3M, respectively. When plotting a graph of an estimated spectrum, it is a good idea to indicate the 
bandwidth that has been used.
The choice of bandwidth is equivalent to the choice of m or M, depending on the method used. This choice is 
an important step in spectral analysis, though it is important to remember that the effects of changing m and 
M act in opposite directions. For the Bartlett, Parzen and Tukey windows, the bandwidth is inversely 
proportional to M. Figure 7.3 shows how the window changes as M varies, using the Bartlett window as a 
representative example. As M gets larger, the window gets narrower, the bias gets smaller but the variance 
of the resulting estimator gets larger. For the smoothed periodogram, the reverse happens. The bandwidth is 
directly proportional to m, and as m gets larger, the window gets wider, the bias increases but the variance 
reduces. For the unsmoothed periodogram, with m=1, the window is very tall and narrow giving an estimator 
with large variance as we have already shown. All in all, the choice of bandwidth is rather like the choice of 
class interval when constructing a histogram. 

 
Figure 7.3 The Bartlett spectral window for different values of M.
We are now in a position to give guidance on the relative merits of the different estimation procedures. As 
regards theoretical properties, it is arguable that the smoothed periodogram has the better-shaped spectral 
window in that it is approximately rectangular, although there are some side lobes. For the transformed acv.
f., the Parzen and Tukey windows are preferred to the Bartlett window. Computationally, the smoothed 
periodogram can be much slower for large N unless the FFT is used. However, if the FFT is used, then the 
smoothed periodogram can be faster. Moreover it is 
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possible to calculate the ac.f. quickly using two FFTs. One drawback to the use of the FFT is that it may 
require data-tapering, whose use is still somewhat controversial. Of course, for small N, computing time is a 
relatively unimportant consideration. As regards computer software, it is much easier to write a program for 
the Parzen or Tukey windows, but programs and algorithms for the FFT are becoming readily available. Thus 
the use of the smoothed periodogram has become more general, either with equal weights as discussed in 
Section 7.4.4, or with a more ‘bell-shaped’ set of weights.
All the above assumes that a non-parametric approach is used in that no model fitting is attempted prior to 
carrying out a spectral analysis. As noted earlier, an alternative approach gaining ground is to use a 
parametric approach, fitting an autoregressive (AR) or ARMA model to the data. The spectrum of the fitted 
model is then used to estimate the spectrum. This approach will be described later in Section 13.7.1.
7.7 Analysing a Continuous Time Series
Up to now, we have been concerned with the spectral analysis of time series recorded at discrete time 
intervals. However, time series are sometimes recorded as a continuous trace. For example, variables such as 
air temperature, humidity and the moisture content of tobacco emerging from a processing plant are often 
recorded by machines that give continuous-time readings. For series that contain components at very high 
frequencies, such as those arising in acoustics and speech processing, it may be possible to analyse such 
records mechanically using tuned filters, but the more usual procedure is to digitize the series by reading off 
the values of the trace at discrete intervals. If values are taken at equal time intervals of length Δt, we have 
converted a continuous time series into a standard discrete-time time series and can use the methods already 
described.
In sampling a continuous time series, the main question is how to choose the sampling interval Δt. It is clear 
that sampling leads to some loss of information and that this loss gets worse as Δt increases. However, 
sampling costs increase as Δt gets smaller and so a compromise value must be sought.
For the sampled series, the Nyquist frequency is π/Δt radians per unit time, and we can get no information 
about variation at higher frequencies. Thus we clearly want to choose Δt so that variation in the continuous 
series is negligible at frequencies higher than π/Δt. In fact most measuring instruments are bandlimited in 
that they do not respond to frequencies higher than a certain maximum frequency. If this maximum 
frequency, say , is known or can be guessed, then the choice of Δt straightforward in that it should be 

less than . However, if Δt is chosen to be too large, then a phenomenon called aliasing may occur. 
This can be illustrated by the following theorem. 
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Theorem 7.1 Suppose that a continuous time series, with spectrum  for 0< <∞, is sampled at equal 
time intervals of length Δt. The resulting discrete time series will have a somewhat different spectrum, say 

 defined over 0< <π/Δt. We will see that the two spectra will only be equal if  is zero for 

>π/Δt. More generally, it can be shown that  and are related by

(7.31)
Proof The proof will be given for the case Δt=1. The extension to other values of Δt is straightforward. 
Suppose that the acv.f.s of the continuous and sampled series are given by γ( ) and γk, respectively. Here y
( ) is defined for all , while γk is only defined for integer k. Of course if  takes an integer value, say k, 
then the two functions are equal as in

(7.32)
Now from Equation (6.18) we have

 
while, from Equation (6.9), we have

 
Thus, using Equation (7.32), we have

 
for k=0, ±1, ±2,…. The next step is to split the infinite integral into sections of length 2π, and then of π, 

using  for all integer s. We get

 
and the result follows. 
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The implications of this theorem may now be considered. First, as noted earlier, if the continuous series 

contains no variation at frequencies above the Nyquist frequency, so that  

then . In this case no information is lost by sampling. However, the more general result is 
that sampling will have an effect in that variation at frequencies above the Nyquist frequency in the 
continuous series will be ‘folded back’ to produce apparent variation in the sampled series at a frequency 
lower than the Nyquist frequency. If we denote the Nyquist frequency π/Δt by , then the frequencies 

 are called aliases of one another. Variation at all these 
frequencies in the continuous series will appear as variation at frequency  in the sampled series.
From a practical point of view, aliasing will cause trouble unless Δt is chosen to be sufficiently small so that 

. If we have no advance knowledge about , then we have to 

guesstimate a value for Δt. If the resulting estimate of  approaches zero near the Nyquist frequency π/

Δt, then our choice of Δt is almost certainly sufficiently small. However, if  does not approach zero 
near the Nyquist frequency, then it is probably wise to try a smaller value of Δt. Alternatively, if the analyst is 
only interested in the low-frequency components, then it may be easier to filter the continuous series so as to 
remove the high-frequency components and remove the need for selecting a small value of Δt.
7.8 Examples and Discussion
Spectral analysis can be a useful exploratory diagnostic tool in the analysis of many types of time series. With 
the aid of examples, this section discusses how to interpret an estimated spectrum, and tries to indicate 
when spectral analysis is likely to be most useful and when it is likely to be unhelpful. We also discuss some 
of the practical problems arising in spectral analysis.
We begin with an example to give the reader some ‘feel’ for the sorts of spectrum shapes that may arise. 
Figure 7.4 shows four sections of trace, labelled A, B, C and D, which were produced by four different 
processes (generated in a control engineering laboratory). Figure 7.4 also shows the corresponding spectra 
calculated from longer series than the short sections shown here. The spectra are labelled J, K, L and M, but 
are given in random order. Note that the four traces use the same scale, the length produced in one second 
being shown on trace D. The four spectra are also plotted using the same scales (linear in both directions). 
The peak in spectrum L is at 15 cycles per second (or 15 Hz).
Before reading on, the reader is invited to guess which series goes with which spectrum. This is not easy, 
especially for the novice time-series analyst, but even experienced analysts may have difficulty. Try to assess 
which series are smoother (and hence have less high frequency variation) and which oscillate quicker. 
Spotting a deterministic sinusoidal perturbation in the presence of noise is more difficult than you might 
expect. 
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Figure 7.4 Four time series and their spectra. The spectra are given in random order.
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The easiest series to assess is trace A, which is much smoother than the other three traces. This means that 
its spectrum is concentrated at low frequency. Of the four spectra, spectrum M cuts off at the lowest 
frequency and is largest at zero frequency. This is the spectrum for trace A.
The other three spectra are harder to distinguish. Trace B is somewhat smoother than C or D and 
corresponds to spectrum K, which ‘cuts off’ at a lower frequency than J or L. Trace C corresponds to 
spectrum J, while trace D contains a deterministic sinusoidal component at 15 cycles per second, which 
contributes 20% of the total power. Thus D corresponds to spectrum L.
From a visual inspection of traces C and D, it is difficult or impossible to decide which goes with spectrum J 
and which with spectrum L. For this type of data, spectral analysis is invaluable in assessing the frequency 
properties. The reader may find it surprising that the deterministic component in trace D is so hard to see, 
but remember that 80% of the power is some sort of noise spread over a wide frequency range and this 
makes the deterministic component, constituting only 20% of the power, hard to see.
The above example contrasts with the air temperature series at Recife, plotted in Figure 1.2. There the 
regular seasonal variation is quite obvious from a visual inspection of the time plot, but in this case the 
deterministic component accounts for about 85% of the total variation. If we nevertheless carry out a 
spectral analysis of the air temperature series, we get the spectrum shown in Figure 7.5(a) with a large peak 
at a frequency of one cycle per year. However, it is arguable that the spectral analysis is not really necessary 
here, as the seasonal effect is so obvious anyway. In fact, if the analyst has a series containing an obvious 
trend or seasonal component, then it is advisable to remove such variation from the data before carrying out 
a spectral analysis, as any other effects will be relatively small and may not be visible in the spectrum of the 
raw data.
Figure 7.5(b) shows the spectrum of the Recife air temperature data when the seasonal variation has been 
removed. The variance is concentrated at low frequencies, indicating either a trend, which is not apparent in 
Figure 1.2, or short-term correlation as in a first-order AR process with a positive coefficient (cf. Figure 6.4
(a)). The latter seems the more likely explanation here, given that there is no contextual reason to expect a 
trend in temperature (other than global warming, which is relatively small compared with other effects). As 
noted earlier, the corresponding periodogram in Figure 7.5(c) shows a graph that oscillates up and down 
very quickly and is not helpful for interpreting the properties of the data. This demonstrates again that the 
periodogram has to be smoothed to get a consistent estimate of the underlying spectrum. 
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Figure 7.5 Spectra for average monthly air temperature readings at Recife, (a) for the raw data; (b) for the 
seasonally adjusted data using the Tukey window with M=24; (c) the periodogram of the seasonally adjusted 
data is shown for comparison.
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Removing trend and seasonality is a simple form of the general procedure usually called prewhitening. As 
the name suggests, this aims to construct a series having properties which are closer to those of white noise. 
In spectral analysis, this is useful because it is easier to estimate the spectrum of a series having a relatively 
flat spectrum, than one with sharp peaks and troughs. Prewhitening is often carried out by making a linear 
transformation of the raw data. Then the spectrum of the transformed series can be found, after which the 
spectrum of the original series can be found, if desired, by using the properties of the linear transformation8 
used to carry out the prewhitening. In spectral analysis, this procedure is often limited to removing trend and 
seasonality, though in other applications more sophisticated model fitting is often used9.
Having estimated the spectrum of a given time series, how do we interpret the results? There are various 
features to look for. First, are there any peaks in the spectrum and, if so, at what frequency? Can we find a 
contextual reason for a peak at this frequency? Second, what is the general shape of the spectrum? In 
particular, does the spectrum get larger as the frequency tends to zero? This often happens with economic 
variables and indicates a business cycle with a very long period or an underlying long-term non-stationarity in 
the mean that has not been removed by prior filtering. Economists, who expect to find a clear peak at low 
frequency, will usually be disappointed, especially if looking for business cycles with a period around 5–7 
years. There is usually little evidence of anything so clear-cut. Rather the low-frequency variation is typically 
spread over a range of frequencies.
The general shape of the spectrum could in principle be helpful in indicating an appropriate parametric 
model. For example, the shape of the spectrum of various ARMA models could be found and listed in a 
similar way to that used for specifying ac.f.s for different ARMA models. The use of the correlogram is a 
standard diagnostic tool in the Box-Jenkins procedure for identifying an appropriate ARIMA process, but the 
observed spectrum has rarely been used in this way. Why is this? Spectral analysis, as described in this 
chapter, is essentially a non-parametric procedure in which a finite set of observations is used to estimate a 
function defined over the whole range from (0, π). The function is not constrained to any particular functional 
form and so one is effectively trying to estimate more items than in a correlogram analysis, where the analyst 
may only look at values for a few low lags. Being non-parametric, spectral analysis is in one sense more 
general than inference based on a particular parametric class of models, but the downside is that it is likely to 
be less accurate if a parametric model really is appropriate. In my experience, spectral analysis is typically 
used when there is a suspicion that 
8 The frequency response function of the linear transformation is defined later in Chapter 9 and leads directly 
to the required spectrum.
9 For example, with two time series it is advisable to prewhiten the series by removing as much 
autocorrelation as possible before calculating quantities called cross-correlations—see Chapter 8.
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cyclic variation may be present at some unknown frequency, and the spectrum shape is rarely used for 
diagnosing a parametric model.
Spectral analysis is arguably at its most useful for series of the type shown in Figure 7.4, where there is no 
obvious trend or ‘seasonal’ variation. Such series arise mostly in the physical sciences. In economics, spectral 
techniques have perhaps not proved as useful as was first hoped, although there have been a few successes. 
Attempts have also been made to apply spectral analysis to marketing data, but it can be argued (Chatfield, 
1974) that marketing series are usually too short and the seasonal variation too large for spectral analysis to 
give useful results. In meteorology and oceanography, spectral analysis can be very useful (e.g. Craddock, 
1965; Snodgrass et al., 1966) but, even in these sciences, spectral analysis may produce no worthwhile 
results, other than those that are obvious anyway. It is often the case that, once obvious cyclic effects have 
been removed (e.g. annual variation from monthly rainfall data; daily variation from hourly temperature 
data), the spectrum will show no clear peaks, but rather a tendency to get larger as the frequency tends to 
zero. The spectrum in Figure 7.5(b) is a case in point. The two examples in Percival and Walden (1993, 
Chapter 6), featuring ocean wave data and ice profile data, yield similar results. Sometimes a small peak is 
observed but tests usually show that this has dubious significance.
We conclude this section by commenting on some practical aspects of spectral analysis. Most aspects, such 
as the choice of truncation point, have already been discussed and will be further clarified in Example 7.1 
below.
One problem that has not been discussed, is whether to plot the estimated spectrum on a linear or logarithm 
scale. An advantage of using a logarithmic scale is that the asymptotic variance of the estimated spectrum is 
then independent of the level of the spectrum, and so confidence intervals for the spectrum are of constant 
width on a logarithmic scale. For spectra showing large variations in power, a logarithmic scale also makes it 
possible to show more detail over a wide range. A similar idea is used by engineers when measuring sound in 
decibels, as the latter take values on a logarithmic scale. Jenkins and Watts (1968, p. 266) suggest that 
spectrum estimates should always be plotted on a logarithmic scale. However, Anderson (1971, p. 547) 
points out that this exaggerates the visual effects of variations where the spectrum is small. It may be easier 
to interpret a spectrum plotted on an arithmetic scale, as the area under the graph corresponds to power and 
this makes it easier to assess the relative importance of different peaks. Thus, while it is often useful to plot 

 on a logarithmic scale in the initial stages of a spectral analysis, especially when trying different 
truncation points and testing the significance of peaks, it is often better to plot the final version of the 
estimated spectrum on a linear scale in order to get a clearer interpretation of the final result.
It is also generally easier to interpret a spectrum if the frequency scale is measured in cycles per unit time (f) 
rather than radians per unit time . This has been done in Figures 7.4 and 7.5. A linear transformation of 
frequency 
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does not affect the relative heights of the spectrum at different frequencies, though it does change the 
absolute heights by a constant multiple.
Another point worth mentioning is the possible presence in estimated spectra of harmonics. As noted 
earlier, when a series has a strong cyclic component at some frequency , then the estimated spectrum may 
additionally show related peaks at , ,…. These multiples of the fundamental frequency are called 
harmonics and generally speaking simply indicate that the main cyclical component is not exactly sinusoidal 
in character.
Finally, a question that is often asked is how large a value of N is required to get a reasonable estimate of 
the spectrum. It is often recommended that between 100 and 200 observations is the minimum. With smaller 
values of N, only very large peaks can be found. However, if the data are prewhitened to make the spectrum 
fairly flat, then reasonable estimates may be obtained even with values of N around 100, as we have shown 
in Figure 7.5(b). However, much longer series are to be preferred and are the norm when spectral analysis is 
contemplated.
Example 7.1 As an example, we analyse part of trace D of Figure 7.4. Although a fairly long trace was 
available, I decided just to analyse a section lasting for 1 second to illustrate the problems of analysing a 
fairly short series. This set of data will also illustrate the problems of analysing a continuous trace as opposed 
to a discrete time series.
The first problem was to digitize the data, and this required the choice of a suitable sampling interval. 
Inspection of the original trace showed that variation seemed to be ‘fairly smooth’ over a length of 1 mm, 
corresponding to 1/100 second, but to ensure that there was no aliasing a sampling interval of 1/200 second 
was chosen giving N=200 observations.
For such a short series, there is little to be gained by using the FFT. I therefore decided to transform the 
truncated acv.f. using Equation (7.21), with the Tukey window. Several truncation points were tried, and the 
results for M=20, 40 and 80 are shown in Figure 7.6. Equation (7.21) was evaluated at 51 points at 

, for j=0, 1,…, 50, where  is measured in radians per unit time. Now in this example ‘unit 
time’ is 1/200 second and so the values of  in radians per second are =200πj/50, for j=0, 1,…, 50. If we 

now convert the frequencies into cycles per second using , we find that the spectrum is 
evaluated at f=2j, for j=0, 1,…, 50. The Nyquist frequency is given by ƒN=100 cycles per second, which 
completes one cycle every two observations. 
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Figure 7.6 Estimated spectra for graph D of Figure 7.4 using the Tukey window with (a) M=80; (b) M=40; 
(c) M=20.
Looking at Figure 7.6, it can be seen that above about 70 cycles per second, the estimates produced by the 
three values of M are all very small and cannot be distinguished on the graph. As the estimated spectrum 
approaches zero as the frequency approaches the Nyquist frequency, it seems clear that no information has 
been lost by aliasing so that our choice of sampling interval is sufficiently small. Indeed we could have made 
the sampling interval somewhat larger without losing much information. For lower frequencies, the estimated 
spectrum is judged rather too smooth with M=20, and much too erratic when M=80. The value M=40 looks 
about right, although M=30 might be even better. The subjective nature of this choice is clear. Using M=40 
or 80, there is a clear peak in the spectrum at about 15 cycles per second (15 Hz). This matches the peak in 
spectrum L of Figure 7.4. However, Figure 7.6 also reveals a smaller unexpected peak at around 30 cycles 
per second. This looks like a harmonic of the deterministic sinusoidal component at 15 cycles per second, and 
may reduce in size if a longer series of observations were to be analysed.
We also estimated the spectrum using a Parzen window with a truncation point of M=56. This value was 
chosen so that the degrees of freedom of the window, namely, 13.3, were almost the same as for the Tukey 
window with M=40. The results were so close to those produced by the Tukey window that there was no 
point in plotting them. The largest difference in the spectrum estimates was 0.33 at 12 cycles per second, 
but most of the estimates differed only in the second decimal place. Thus the Tukey and Parzen windows 
give much the same estimates when equivalent values of M are used. 
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The reader should note that the bandwidths for different values of M are indicated in Figure 7.6. The 
bandwidth for the Tukey window is 8π/3M in radians per unit time. As ‘unit time’ is 1/200 second, the 
bandwidth is 1600π/3M in radians per second or 800/3M in cycles per second.
Confidence intervals can be calculated as described in Section 7.5. For a sample of only 200 observations, 
they are disturbingly wide. For example, when M=40, the degrees of freedom are 2.67N/M=13.3. For 
convenience this is rounded off to the nearest integer, namely, v=13. The peak in the estimated spectrum is 

at 14 cycles per second, where =7.5. Here the 95% confidence interval is (3.9 to 19.5). Clearly a 
longer series is desirable to make the confidence intervals acceptably narrow.
Exercises
7.1 Revision of Fourier series. Show that the Fourier series, which represents the function

 
is given by

 
7.2 Derive Equations (7.6) and (7.8).
7.3 Derive Parseval’s theorem, given by Equation (7.14).
7.4 If X1,…, XN are independent N(µ, σ2) variates show that

 
is N(0, 2σ2/N) for p=1, 2,…, (N/2)−1.
7.5 Derive the lag window for smoothing the periodogram in sets of size m. For algebraic simplicity take m 
odd, with , so that

 
(Hint: The answer is given in Section 7.4.4. The algebra is rather messy. Use Equation (7.18) and the 
following two trigonometric results:

 
< previous page page_154 next page >

/The analysis of time series an introduction/files/page_154.html [5/24/2009 16:52:36]桌面file:///C:/Documents and Settings/Yang/

file:///C:/Documents%20and%20Settings/Yang/%E6%A1%8C%E9%9D%A2/The%20analysis%20of%20time%20series%20an%20introduction/files/page_155.html
file:///C:/Documents%20and%20Settings/Yang/%E6%A1%8C%E9%9D%A2/The%20analysis%20of%20time%20series%20an%20introduction/files/page_155.html

